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ABSTRACT The differential adhesion between cells is believed to be the major driving force behind the formation of tissues.
The idea is that an aggregate of cells minimizes the overall adhesive energy between cell surfaces. We demonstrate in a model
experimental system that there exist conditions where a slowly growing tissue does not minimize this adhesive energy. A
mathematical model demonstrates that the instability of a spherical shape is caused by the competition between elastic and
surface energies.

INTRODUCTION

The differential adhesion hypothesis states that cells in

a growing tissue organize themselves to minimize the surface

energy associated with the adhesion of different cells to each

other. The hypothesis assumes that an aggregate of cells with

different adhesive strengths is similar to a system of different

liquids with different surface tensions. Over the years, many

studies have provided evidence for this hypothesis via both

experiments (Fink and McClay, 1985; Foty et al., 1994, 1996;

Ryan et al., 2001; Steinberg, 1962, 1964; Townes and

Holtfreter, 1955; Trinkaus, 1963) and simulations (Glazier

and Graner, 1993; Palsson and Othmer, 2000). The surface

tension of certain embryonic tissues have been directly

measured (Foty et al., 1994, 1996), and as expected, mixtures

of cells segregate to minimize the overall surface energy.

If the morphology of a growing tissue is dictated solely by

surface energy minimization, then this has implications not

only for the position of cells relative to each other but also

for the overall shape of the tissues: in the absence of exter-

nal forces, a tissue-minimizing surface energy should be

composed of spherical regions. The goal of the present work

is to test this hypothesis within a particularly simple

example: the shape of a droplet of a single cell type growing

on a nutrient-enriched substrate. As for liquid droplets, the

equilibrium shape of such a structure is a spherical cap with

a contact angle given by Young’s law,

gCA cosðuÞ1 gCS ¼ gSA; (1)

which relates the equilibrium contact angle u of the colony at

the agar substrate to the surface energies of the liquid and

solid. Here, gCA is the adhesion energy of the cells to each

other, gCS is the adhesion energy of the cells to the substrate,

and gSA is the energy per unit area of the substrate. All of

these quantities should change when the types of cell and

substrate are varied.

Our experiments focus on colonies of Baker’s yeast

(Saccharomyces cerevisiae), growing on an agar substrate.

The advantage of this system is threefold. First, the gene

expressing the adhesive protein (FLO11) is known, and thus

the cell-cell adhesion gCA can be genetically controlled.

Second, the adhesivity of the substrate gCS can be varied

by changing the agar concentration. Third, yeast cells are

spherical and have no mechanism for active motility. The

experiments demonstrate that, consistent with Young’s law

(Eq. 1), changing either the agar concentration or the

expression of FLO11 modifies the local contact angle of the

yeast droplet. Moreover, when the colony is sufficiently

small, its shape is a spherical cap, consistent with surface

energy minimization. However, above a critical (contact-

angle-dependent) volume the spherical structure is unstable,

and the colony develops a nonspherical shape. Since these

shapes are inconsistent with surface energy minimization,

the experiments demonstrate that there must be other forces

acting on the tissue. The possible candidates in our ex-

periments are gravity, adhesive gradients, growth stresses,

and elastic stresses. We present a mathematical model

suggesting that the change in tissue morphology arises from

elastic deformations of the colony. The model demonstrates

that a spherical elastic droplet on a solid substrate with fixed

contact angle is unstable above a critical (contact-angle-

dependent) volume, quantitatively consistent with experi-

ments. The model reproduces both the instability threshold

and the shape of the yeast droplets near the threshold,

consistent with the experiments.

The organization of this article is as follows. In Ex-

perimental Procedures, we describe our experimental system

and discuss the results. A phase diagram is presented

delineating the borderline between spherical shapes (where

the colony shapes minimize surface energy), and non-

spherical shapes (where other forces are acting). In Math-

ematical Model, we derive a mathematical model for an

elastic droplet on a solid surface, and analyze the stability of

the droplet to nonspherical perturbations. The instability

threshold is computed and compared with experimental

observations. We also present analytic calculations of droplet
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shapes beyond the transition. Finally, Discussion presents

conclusions and directions for future work.

EXPERIMENTAL PROCEDURES

Background

Our study focuses on an assay discovered by Reynolds and

Fink (2001). They noticed that when Baker’s yeast (S.
cerevisiae) grows in a low glucose medium they adhere to

plastic and form biofilms. The ability of the yeast to stick to

plastic was traced back to FLO11, a yeast gene encoding

a cell surface glycoprotein that allows cells to adhere to agar

and to each other. This gene can be turned off (producing the

mutant flo11D) or overexpressed (producing the strain

sfl1D), so that three independent strains of otherwise

identical cells with different adhesion strengths exist.

Reynolds and Fink found that when wild-type (WT) yeast

grows on a low agar concentration (0.3%), it forms a complex

structure with reproducible features. Since the cells are

nonmotile, the structures that form are entirely the result of

the forces that act upon them. The morphologies observed in

the Reynolds-Fink experiments are determined by a large

number of related effects, including adhesion, nutrient

consumption, and water content.

Materials and methods

Yeast strains

We use Baker’s yeast S. cerevisiae with different levels of

expression of the adhesive protein FLO11 (obtained from the

laboratory of Dr. G. Fink, The Whitehead Institute, Cam-

bridge, MA). There are three strains, flo11D, wild-type

(WT), and sfl1D, that express low (zero), normal, and high

levels of FLO11, respectively. The strains are characterized

by the levels of adhesion as nonsticky, sticky, and super-

sticky. The system has many advantages. First, these cells

are spherical and nonmotile with an average cell division

time of 2 h. Cellular rearrangements are possible through

forces the cells exert on each other and on their environment.

An aggregate of these cell types has an effective surface

energy gCA due to adhesive interactions between individual

cells. The magnitude of gCA is set by the concentration of

this cell surface protein, which is genetically controlled.

Preparation of agar substrate and yeast colonies

The growth medium YPD is composed of water, 1% Difco

yeast extract, 2% Bacto peptone, and 2% Mallinckrodt

dextrose. A desired amount of Bacto agar is added to the

growth medium. The mixture is then autoclaved for 20 min at

1228C to dissolve the agar and sterilize the medium. The

substrate is prepared by pouring 30 ml of the sterile mixture

into a sterile petri dish (Corning, Acton, MA) and allowed to

set for 1 h. A sterilized glass plate is placed at the bottom of the

petri dish before pouring in the mixture. This makes the

transfer of the substrate between the petri dish and the

microscope stage more stable and easier. When the plates are

set, they are ready for inoculation. Colonies are inoculated by

spreading 25 ml of a dilute mixture of yeast cells and liquid

YPD. The inoculation procedure ensures that for each plate

the number of colonies is small (\20) and spread out. The

inoculated plates are placed in a humidified incubator at 288

for a couple of days.

Imaging and data analysis

Once the colonies are visible by eye the imaging process

begins with a side-view microscope (Leica Monozoom 7,

Leica, Bannockburn, IL) with an attached charge-coupled

device camera. This allows the measurement of contact

angles that a yeast colony makes with the agar substrate and

the two-dimensional shape of the colony as a function of

time. For imaging, the glass plate with the agar substrate is

cut and removed from the petri dish and then placed on the

microscope stage. A dual cold light source (Fiber Lite MI-

150, Dolan Jenner, Lawrence, MA) is used to illuminate the

colonies from the sides. Time-lapse images of the colonies

on the same plate are taken every few hours; between images

the plates are placed back in a humidity controlled

environment. Even with the glass plate, the transferring of

a substrate of agar concentration \1% is not stable. This

limits the experiments to agar concentrations of $1%. We

acquire and analyze the images using Metamorph software

(Universal Imaging, Downington, PA).

Results

Contact angle

The first set of experiments is designed to measure the

contact angle of a yeast droplet for fixed agar concentration,

and to determine if it remains constant throughout the growth

of the colony, as implied by Eq. 1. Time-lapse images of

colonies of the same plate were taken every 2 h. Our initial

experiments showed that although the shape of small yeast

droplets remains spherical, the contact angle actually

increases with time, contradicting Young’s law with constant

surface energies. We hypothesized that the increase in the

angle might arise from the evaporation of water from the

colonies and the substrate during the imaging process. We

therefore conducted a set of experiments using a number

of identically inoculated plates to verify this hypothesis. Af-

ter the colonies on a given plate are imaged, the plate is

discarded to avoid evaporation. Images at later times were

taken from a fresh plate from the incubator. These experi-

ments demonstrate that the contact angle remains constant

during the entire growth of the colony (Fig. 1). The con-
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stancy of the contact angle is obeyed even after the instability

(to be discussed subsequently) occurs.

Fig. 2 shows images demonstrating that an increase in

cell-cell adhesion increases the contact angle. The super-

sticky Sfl1D strain has the highest contact angle at a given

agar concentration, consistent with its higher surface

tension. The sticky wild-type (WT) and nonsticky flo11D

strains have similar contact angles. Although one might

expect the wild-type strain to have a larger contact angle

than the mutant flo11D strain owing to the expression of the

adhesive protein, this neglects the effect of water on the

surface energy of the colony. When the adhesion between

cells is sufficiently weak, one would expect the cell-cell

adhesion energy gCA to be dominated by the surface tension

of water; although we have no direct way of measuring

gCA, we believe this is a consistent interpretation of the

data.

Fig. 2 also shows images documenting the change in u on

varying the agar concentration from 1% to 3%. The contact

angle increases with increasing agar concentration. The

mechanism through which the yeast colony adheres to the

agar is unknown. If the yeast cells adhered to the agar

directly, one would expect the contact angle to decrease with

increasing agar concentration. This is because higher agar

concentrations would give a higher concentration of binding

sites between the yeast and agar, consequently changing gCS.

On the other hand, increasing agar concentration also visibly

dehydrates the yeast colony; this effect will also change the

cell-cell surface energy gCA.

Although the molecular mechanisms controlling the

contact angle are interesting, the most important conclusion

for the present study is that the contact angle remains

constant in time, and can be manipulated by changing either

the agar concentration or the cell adhesion.

Colony shape

When the colony is sufficiently small, the shape is always

a spherical cap, as expected from surface energy minimiza-

tion. However, we observe that at a critical time during the

growth, the spherical shape destabilizes. After the instability,

the resulting morphologies include staircase, staircase with

centered dimple, and spherical cap with dimple (Fig. 3). A

contour plot of time-lapse images of a WT colony (Fig. 4)

demonstrates the transition of the colony from spherical to

nonspherical. Extensive observations indicate that the

character of the instability is determined entirely by the

contact angle u. For instance, a superadhesive sfl1D colony

on 1.5% agar concentration has a similar contact angle to

a wild-type colony on 2.1% agar; although the surface

tension gCA of sfl1D is higher than the wild-type, the

Young’s law equation (Eq. 1) implies that this is compen-

sated by the higher agar concentration. Despite the differing

FIGURE 1 Constant contact angle. Plot of contact angle as a function of

radius of WT colonies on 2.1% agar concentration. Each point is an average

of 20 colonies. Images taken were then sorted according to size. Error bars

represent the standard deviation.

FIGURE 2 Dependence of contact angle on adhesion and agar concen-

tration. (a) Side view of colonies from three strains on substrate of different

agar concentrations. Increasing cell adhesion is horizontally across and

increasing agar concentration is vertically down. (b) Plot of contact angle as

a function of agar concentration for sfl1D (squares), WT (circles), and

flo11D (right triangles). The scale bar denotes 100 mm.
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mechanisms leading to the contact angle, both types of

colonies come to a staircase morphology. This suggests that

morphology is controlled completely by the adhesion level

and agar concentration, which together determine the contact

angle of the colony.

This observation suggests that the critical volume where

a nonspherical shape occurs can only depend on the contact

angle, u, with no explicit dependence on the type of cells

or the agar concentration. To test this hypothesis we mea-

sured a phase diagram (Fig. 5) of colony morphologies

as a function of colony volume and contact angle. The

transition to nonspherical shapes indeed occurs above a

contact-angle-dependent critical volume. In Fig. 5, for high

contact angles and low colony volumes, the shapes are

spherical; for low contact angles and high colony volume,

the shapes are nonspherical. The nonspherical regime is

divided into three subregimes based on the contact angle: at

low angles (u\ 408), the shapes are staircases; at midangles

they are staircases with a dimple; at highest angles (u[708),

they are dimples.

The experimental phase diagram is obtained with the WT

and flo11D strains on four different agar concentrations

ranging from 1.8% to 3% and sfl1D strain on 1–1.5%. For

each agar concentration, we make eight identical plates.

Images are taken from a different plate every 2 h. At the end

of the experiment we have ;150 images per agar

concentration. The detected edge yexpt(xi), {i ¼ 1. . .N} is

analyzed to obtain contact angles, radii, and areas of the

colonies. The edges are then fit to a circular cap yfit(x) using

a least-squares method. We then calculate x2, defined as

x
2 ¼ 1

N
+
N

i¼1

ðyfitðxiÞ � y
exptðxiÞÞ2

s
2 ;

where s is the measurement error per data point. When the

colony transitions from a spherical to a nonspherical shape,

x2 rapidly increases. We are interested in detecting the early

stage of the instability. We define the instability to occur

when x2 is in the range between 0.1 and 0.3. Applying this

threshold to each set of conditions then yields the phase

diagram (Fig. 5).

The fact that the spherical colony shape destabilizes above

a critical volume implies that there must be a force other than

surface tension affecting the colony shape. The obvious

candidates for this additional force are gravity, gradients

in adhesivity caused by nonuniform nutrient consumption

or waste production in the colony, and elastic stresses.

Although gravitational forces should play a role when the

colony is sufficiently large, we ruled out gravity by

performing experiments on colonies grown while inverted.

The colony becomes unstable at exactly the same volume

independent of its orientation relative to gravity. We tested

for the importance of nutrient consumption or waste

production by carrying out experiments where the glucose

level in the substrate is varied. Since the expression of

adhesive protein is directly controlled by the level of glucose

(Reynolds and Fink, 2001), varying the glucose level

simulates the effect of nutrient consumption. The experi-

ments showed that the instability occurs at the same critical

FIGURE 3 Types of instabilities. Images of the different types of unstable

morphologies from WT (a) and sfl1D (b, c) on 1.8, 1.2, and 2% agar

concentrations, respectively. The three types of morphologies imaged are

staircase (a), staircase with dimple (b), and dimple (c). The scale bar denotes

1 mm.

FIGURE 4 Contour plot of time-lapse images of a WT colony on 2.1%

agar concentration. Two hours elapse between each two contours starting

from the innermost curve.

FIGURE 5 Theoretical (solid line) and experimental (points) phase

diagram. The bifurcation curve demonstrates when the transition from

spherical to nonspherical shape occurs. Above the theoretical curve is the

spherical regime and below is the nonspherical regime. Experimental data

come from WT colonies (left triangles) and flo11D (right triangles) on 1.8,

2.1, 2.4, 2.7, and 3% agar concentrations, as well as sfl1D (squares) on 1,

1.2, and 1.5% agar.
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volume for different levels of glucose, ruling out the

possibility of nutrient depletion on causing the instability.

The only remaining candidate is the possibility of

developing elastic stresses in the colony. Elastic stresses

might be generated by cell growth; however, the very slow

cell division timescale (typically 2 h) makes this unlikely.

Assuming the colony material is similar to particulate gel, we

can compare the growth rate to the stress relaxation rate.

Yeast cells divide on average every 90 min; hence, the

growth rate is 1/5400 s�1. The shear modulus of a particulate

gel of volume fraction � 0.5 is of ;103dyn/cm2 and the

maximum dynamical viscosity is of ;102 dyn/s per cm2

Larson (1999); hence, the stress relaxation rate is ;10 s�1,

which is much larger than the growth rate. Therefore, the

elastic stresses induced by cell growth relax very quickly,

and should not affect the colony morphology. Elastic stresses

might also arise due to a direct instability of the spherical

cap, in which the elastic energy to support a nonspherical

shape is less costly than the surface energy for the shape to

remain spherical. To explore this possibility, we developed

a phenomenological mathematical model of an elastic

droplet on a solid surface. The model demonstrates that

the spherical cap solution is unstable at a contact-angle-

dependent critical volume, reminiscent of the experimental

findings.

MATHEMATICAL MODEL

To assess the possibility of an elastic instability of the yeast

colony, we study the stability of a spherical cap with fixed

contact angle to nonspherical perturbations, assuming that

the total energy is the sum of surface and elastic energies.

The calculation we carry out here is actually two-dimen-

sional, for the interests of algebraic simplicity; hence the

term ‘‘spherical cap’’ refers to an infinite two-dimensional

cylindrical cap. The strategy of our stability analysis is as

follows: first, we assume that the shape of the colony with

fixed volume and fixed contact angle is h(x), not necessarily

a spherical cap. Here h(x) denotes the thickness of the colony

a horizontal distance x from its center. We then compute the

elastic stresses that are necessary for this shape to be in

equilibrium, assuming that the elastic stresses balance the

capillary pressure from the unbalanced surface tension force.

Finally, the total energy (surface and elastic) is minimized,

subject to constant volume and constant contact angle

constraints that give the preferred shape of the colony. We

view this calculation as phenomenological, since the precise

mechanism coupling capillary forces to elastic stresses is not

specified.

Elastic lubrication theory

We begin by calculating the elastic strain that must exist in

the colony for a nonspherical shape to remain in equilibrium.

We consider a two-dimensional colony with height z ¼ h(x).

The strain field in the colony is =u(x, z) where u(x, z) is the

displacement. For small deviations from a spherical cap (for

which there are no elastic strains) we assume the

displacement field is measured relative to the spherical cap

with identical volume. The yeast colony is incompressible

(= � u ¼ 0), owing to the water in the yeast droplet.

Displacements in the colony then follow from the equilib-

rium equations of an elastic droplet,

G=
2u1=p ¼ 0; (2)

= � u ¼ 0; (3)

where G is the elastic modulus of the material (Landau and

Lifshitz, 1986). We remark that the magnitude of G is not the

same as the elastic modulus of a single yeast cell (Smith et al.,

2000), since the elastic deformations of a yeast colony result

in deformation of the network of cells in the colony, instead

of the individual cells themselves (Larson, 1999). The bulk

elasticity G is therefore much smaller than that of the cells

themselves. A typical value of G for particulate gel is ;3 3

103 dyn/cm2 for a volume fraction of 0.5 (Larson, 1999).

To compute the strain predicted by Eqs. 2 and 3, we

assume that the characteristic length scale of the colony in

the horizontal (x) direction, L, is much larger than that in the

vertical (z) direction, h. Such a lubrication approximation is

common in analyzing thin-film flows in fluid mechanics

(Batchelor, 1973). Denoting the components of the displace-

ments u in the x and z directions as ux and uz, respectively,

the equilibrium equations are

G=
2u � G

@
2u

@z
2 ¼ �=p; (4)

where we have used the fact that the horizontal scale is much

larger than the vertical scale to approximate @2
x � @2

z .

Similarly, the incompressibility condition @xux 1 @zuz ¼
0 implies uz ¼ �zð@ux=@xÞ1 . . . ; so that ½uz� ; h=L½ux�.
Hence when h=L � 1 we have uz � ux, and vertical

displacements are unimportant. Similarly, Eq. 4 implies that

@zp � @xp, so that we can assume the pressure primarily

depends on the horizontal coordinate p ¼ p(x).

With these simplifications the equilibrium equations

reduce to a single equation for ux. Henceforth we drop the

subscript x and denote the elastic displacement by u. The

boundary conditions are that the displacement vanishes on

the agar substrate u(z ¼ 0) ¼ 0, and the shear stress at the

yeast-air interface vanishes @zu(z ¼ h) ¼ 0; finally, the

pressure at the yeast-air interface is given by the Gibb’s

condition (Landau and Lifshitz, 1987),

pðz ¼ hÞ ¼ �gh0: (5)

This last equation provides the coupling of the surface

tension force to the elasticity stresses; although the coupling
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appears to be benign, coinciding as it does with the classical

Gibb’s condition at liquid-liquid interfaces, the equation must

be viewed as phenomenological. In particular, at this level of

description we are not specifying the precise mechanism

through which capillary forces create elastic stresses. We will

comment more on this issue later in the article.

Applying the boundary conditions and solving Eq. 4 gives

the displacement in terms of h(x),

u ¼ gh90

G

z
2

2
� zh

� �
: (6)

A straightforward calculation then gives the total energy

of a yeast colony with arbitrary shape h(x),

E½h� ¼ 2g
2

3G

ð
h90

2
h

3
dx1 g

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 h9

2
p

dx1 p0

ð
h dx; (7)

where the first term is the elastic energy, the second term the

surface energy, and p0 is a Lagrange multiplier (‘‘pressure’’)

that enforces the constant volume constraint. Note that if the

shape is exactly a spherical cap (so that h(x) ¼ h0(x) has

constant curvature), the elastic energy vanishes identically,

so the spherical cap solution is a stationary solution to Eq. 7.

Instability of spherical cap

Our goal now is to demonstrate that there are colony shapes

with a fixed volume v0 and equilibrium contact angle u that

can lower their energy by deviating from a spherical cap. We

first give a qualitative argument exposing how this instability

can arise, and then proceed with a detailed calculation.

Scaling argument

Consider a colony with volume v0 and contact angle u. If h is

the characteristic thickness of the colony and R is its radius,

then v0 ; hR ; R2u. From Eq. 7, the elastic energy of such

a colony is of order ðg2=GÞðh=R3Þ2h3R ; ðg2=GÞu5 and the

surface energy is of ordergðh=RÞ2R ; gu2R. At large enough

radius, the surface energy contribution dominates the elastic

energy, and thus the colony will deform. These two energies

are the same order of magnitude when u* ; (G/gR*)1/3 or

u* ; ((G/g)2v0*)1/7, where g/G is the characteristic length

scale representing the competition between surface tension

and elasticity. For a typical yeast colony, g ; 10 dyn/cm

(Forgacs et al., 1998) and G ;3 3 103 dyn/cm2 (Larson,

1999) so the characteristic scale of the instability is 10�2 cm.

For volumes v0 [ v0* an instability to a nonspherical

solution will occur. Note that in this regime, increasing the

volume of the colony increases both the elastic and surface

energies. However, it is cheaper overall to distort the surface

then to spread the colony into the larger area necessary to

maintain constant contact angle.

Quantitative argument

The scaling argument can be made quantitative by studying

the first variation of Eq. 7. Assuming that h9 � 1, we have

2g
2

3G
½�ðh90h3Þ901 3h902h2� � gh0 ¼ p0: (8)

We are interested in solutions to Eq. 8 that are close to

a spherical cap. Denote h0ðxÞ ¼ ð2v0=3RÞð1 � x2=R2Þ as

a spherical cap with radius R and volume v0. The radius is

related to the contact angle through tan ðuÞ ¼ ð4v0=3R2Þ,
and the pressure enforcing the volume constraint is then

p0 ¼ ð4g=3RÞ. Taking h ¼ h0 1 cr and expanding Eq. 8 to

leading order in r and integrating twice, we obtain

ðh3

0r90Þ91ar ¼ 0; (9)

where a ¼ 3G/2g. A nonspherical solution exists if there

exist nonzero solutions to Eq. 9, satisfying the boundary

conditions. The boundary conditions are that the solution is

symmetric around the origin r9(0) ¼ r90(0) ¼ 0; at the radius

R the profile vanishes r(x ¼ R) ¼ 0 and the slope obeys the

contact angle condition ð�4v0=3R2Þ1r9ðx ¼ RÞ ¼ �tan u.

(For the spherical cap solution, r ¼ 0, so the radius satisfies

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v0=ð3 tan ðuÞÞ

p
.) Finally, since we are considering

perturbations to the shape at constant volume, if we fix the

volume of the solution to be v0, then the volume associated

with r must vanish (
R R

x¼0
r dx ¼ 0). The boundary conditions

correspond to five conditions on the solution; Eq. 9 is fourth

order, and in addition we have the unknown critical volume

v0*. Hence these conditions are sufficient to uniquely specify

the instability.

The most convenient way to find additional solutions is to

rescale the horizontal coordinate y ¼ x/R, and introduce v9 ¼
r. The volume constraint on r then implies that v(y ¼ 0) ¼
v(y ¼ 1) ¼ 0. The equation for v is

½ð1 � y
2Þ3

v909�91Gv9 ¼ 0; (10)

with boundary conditions v0(0) ¼ v909(0) ¼ v(0) ¼ v(1) ¼
v9(1) ¼ 0. Now we can view G ¼ a2R4/3v0 as an eigenvalue.

We numerically computed the smallest eigenvalue for which

nonzero solutions to this equation exist: G ¼ G* ¼ 65.12.

Hence, we have an explicit formula for the bifurcation curve,

tan u*¼ 0.72((g/G)2v0*)1/7. Notice that g/G is a characteristic

length scale. Normalizing the volume by letting V ¼ v0*/(g/

G)2 gives

tan u
� ¼ 0:72V

1=7
: (11)

For volume v0 [ V other than those given in Eq. 11, the

spherical cap solution is unstable. The solid line in Fig. 5
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shows the theoretical bifurcation curve. In this comparison

we have assumed that g ¼ 73 dyn/cm (the surface tension of

water) and G ¼ 5 3 103dyn/cm, as described above. The

theoretical curve captures the trends of the experiments.

Finally, we note that the shape of the colony close to the

bifurcation point also follows from this analysis. The shape

of the colony is h(x) ¼ h0(x) 1 cr(x). A weakly nonlinear

analysis around the bifurcation point demonstrates that if

the volume of the colony increases from v0* ! v0* 1 dv,

the solution is c ¼ ð3dv=v0ð1ÞÞ. To leading order in dv, the

radius of the colony is constant.

Fig. 6 shows the two possible configurations for the

colony near the bifurcation point, i.e., the spherical solution

and the nonspherical solution. The inset shows the energy of

both solutions as a function of distance from the bifurcation

point. As advertised, the nonspherical solution has lower

energy then the spherical one. Note that this comes about

because the spherical solution has a larger radius (and hence

higher surface area), to fit the constant contact angle

condition.

DISCUSSION

We have demonstrated through experiments and a mathe-

matical model that the shape of a growing yeast colony is

governed entirely by surface energy minimization and

surface adhesion when the colony is sufficiently small, but

that above a critical volume elastic stresses play an equally

important role in determining the colony shape. In the elastic

regime, the colony shape is contact-angle-dependent. The

role of elastic stresses in determining the contact-angle-

dependent morphology is illustrated through a mathematical

model, which demonstrates that above a critical (contact-

angle-dependent) volume, the spherical-cap solution is

unstable and elastic stresses are important. The contact

angle dependence of the critical volume is quantitatively

consistent with the experiments. Our mathematical analysis

is limited to the neighborhood of the instability threshold.

Beyond the threshold, there is a zoo of contact-angle-

dependent colony shapes (e.g., the staircase morphology

occurs when u \ 408, and when u [ 708 the colony has

a single dimple in the center).

The mathematical model that we have analyzed is

phenomenological, in that it assumes that unbalanced

capillary forces can be balanced by elastic stresses, although

we do not give a microscopic description of how this

coupling comes about. As an example, for the deformation of

solid bodies, shape modulations of the crystal couple to

elastic distortion through surface stresses, a concept that does

not exist in our problem. One intriguing mechanism for the

coupling is suggested by the striking similarity between our

nonspherical morphologies and those that have been

discovered in the shapes of a drying droplet of a colloidal

suspension (Parisse and Allain, 1996). Although the

humidity controlled environment of our experiments should

not allow much drying to occur, the growth of the cells in the

yeast colony implies that the volume fraction of solid

particles in the colony is increasing. Such an increase cannot

proceed indefinitely without dewetting the cells in the

colony, resulting in elastic stresses. Further work analyzing

the precise mechanisms and parameter regimes where such

drying stresses could come about is underway.

The demonstration of elastic instability in this simple

model of tissue growth points to the possibility of elastic

effects in more complex situations. For example, the

instability we have identified is the precursor to the complex

morphologies discovered by Reynolds and Fink (2001). The

precise role of elastic stresses in determining tissue

morphologies under more general conditions remains to be

seen. The present experience with yeast droplets demon-

strates that at least two different materials with different

adhesive energies are needed for an elastic instability. The

general requirements for elastic stresses to play a role in

determining tissue morphology remain to be worked out. It

seems possible that the fundamental notion of selective

adhesion as a driving force for tissue development needs to

be supplemented with elastic effects. If so, there is the

fascinating possibility of elastic stresses being regulated

during development through, for example, cells modifying

their individual stiffness.
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FIGURE 6 Theoretical solution and corresponding energy. Predicted

nonspherical shape solution versus spherical cap solution for the same

sample volume v0 ¼ 0.5, u ¼ 27.48, and dv0 ¼ v0/10. Inset figure plots total

energy as a function of dv0, demonstrating that the nonspherical shape has

lower energy.
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